Climate

Another extreme drought hits the Amazon, raising climate change concerns

With exclusive commentary by forest scientist Simon Lewis

Drought in the Amazon (1 month assesment period, through 16  October 2010).  Source: University College London,

We know from simple on-the-ground knowledge that the 2010 drought was extreme, leading to record lows on some major rivers in the Amazon region and an upsurge in the number of forest fires. Preliminary analyses suggest that the 2010 drought was more widespread and severe than the 2005 event. The 2005 drought was identified as a 1-in-100 year type event.

That’s from an email to CP by forest scientist Simon Lewis, a leading expert on the Amazon (see Scientists: “There are multiple, consistent lines of evidence from ground-based studies published in the peer-reviewed literature that Amazon forests are, indeed, very susceptible to drought stress”).

The figure above is from the University College London Global Drought Monitor via a post by WWF’s Nick Sundt, that I am reposting below.  It represents a 1-month assessment period, through 16 October 2010.

Amazon drought, BrazilBut first, here’s a excerpt from an article (with a video) by the Global Post that Lewis recommends, “Rivers run dry as drought hits Amazon: Droughts are growing more severe. Has the world’s largest rain forest reached its tipping point?”  In the photo, “Brazilians cross the muddy bottom of the Rio Negro, a major tributary to the Amazon River, in the city of Manaus, Oct. 26, 2010.”

The world’s largest rain forest was dangerously dry, and may well be drying out.

October marked the end of one of the worst Amazon droughts on record “” a period of tinder-dry forests, dusty cropland and rivers falling to unprecedented lows. Streams are the highways of the deep jungle and they’re also graveyards for dead trees, usually hidden safely under fathoms of navigable water.

But not this year, and the drought’s significance extends far beyond impeded boats.

While the region has seen dry spells before, locals and experts say droughts have grown more frequent and severe. Scientists say there’s mounting evidence the Amazon’s shifting weather may be caused by global climate change.

The world’s largest rain forest has long been a bulwark of hope for a planet troubled by climate change. Covering an area the size of the continental United States, the Amazon holds 20 percent of Earth’s fresh water and generates a fifth of its oxygen. With the planet’s climate increasingly threatened by surging carbon emissions, the Amazon has been one of the few forces keeping them in check. But the latest scientific evidence suggests the forest may be unable to shield us from a hotter world.

“Every ecosystem has some point beyond which it can’t go,” said Oliver Phillips, a tropical ecology professor at the University of Leeds who has spent decades studying how forests react to changing weather. “The concern now is that parts of the Amazon may be approaching that threshold.”

Phillips led a team of dozens of researchers who studied the damage caused by a severe 2005 drought to trees and undergrowth at more than 100 sites across the Amazon. His findings, published in the journal Science, are troubling.

Through photosynthesis, the rain forest absorbs 2 billion tons of atmospheric carbon dioxide each year. But the 2005 drought caused a massive die-off of trees and inverted the process. Like a vacuum cleaner expelling its dust, the Amazon released 3 billion tons of carbon dioxide in 2005. All told, the drought caused an extra 5 billion tons of heat-trapping gases to end up in the atmosphere “” more than the combined annual emissions of Europe and Japan.

It still remains to be seen whether the rain forest’s ability to absorb greenhouse gases has been permanently harmed. “We can’t say for sure “” it could be happening now,” Phillips said. “Often you don’t know you’ve passed a turning point until you’ve already passed it.”

Phillips said he’s worried about yet another drought following so closely after the last. Along the edge of the forest in Peru and Bolivia, there were more fires this year than any year on record, he said, along with reports of substantial damage to plants in the normally wet northwestern Amazon.

“The humid tropical forests have evolved at pretty high temperatures but there’s a temperature at which you don’t see them on the planet,” said Greg Asner, an ecologist at the Carnegie Institution for Science. “And some tropical forests in the world now are starting to be exposed to temperatures they’ve never experienced.”

(Courtesy Greg Asner.)

Asner recently completed a study of world rain forests showing just how extensive the damage could be. He took 16 leading models for predicting the next century of climate change and essentially created a map “” showing hotspots where they all agreed rising greenhouse gases would substantially change the forest.

He found that higher temperatures and shifts in rainfall could leave as much as 37 percent of the Amazon so radically altered that the plants and animals living there now would be forced to adapt, move or die. When other man-made factors like logging are taken into account, the portion of affected forest could be as high as 81 percent.

Asner said melting polar ice sheets aren’t the only climate change sentinels out there. The world’s largest rain forest “” drained, drying, sometimes burning “” is on the front lines, too, and just as threatened.

“I hate to pit myself against the polar bears,” he said. “But we’re talking about the Amazon, the majority of the biodiversity on the planet is in the humid tropical forests.”

Locals call the Amazon’s annual dry spells “the burning season,” named for the forest fires landholders regularly set to make room for crops and cows. In past decades, fires kindled on the jungle’s edges burned themselves out once they advanced a few yards into permanently damp virgin forest.

But that changed with the 2005 drought, said Foster Brown, an environmental scientist at the federal university in the Brazilian state of Acre….

“The ecosystems here have become so dry that instead of a being a barrier to fire, the forest became kindling,” he said. “We’ve changed from a situation where a relatively small part of the region would be susceptible to fire to the entire region being susceptible to fire.”

Burned forests aren’t the only evidence of drought. This year, one of the Amazon River’s biggest tributaries, the Rio Negro, dropped 13 feet below its dry-season average “” to the lowest level on record. Channels in some areas have become little more than winding belts of mud “” leaving boats stranded and remote communities cut off from supplies….

“Everything has changed. We don’t know when we can plant. We plant and then the sun kills everything,” Mariazinha said. “If it continues like this, we expect a tragedy.”

And the point she pressed upon her visitors was, perhaps they should be worried, too.

“I ask you,” she said, “as someone who lives in the outside world who knows the tragedy that’s happening there “” is there anything we can do?”

Here is what Lewis has to say about the drought:

We need to be a little cautious when looking at these unpublished results as we don’t know the exact details of the techniques used to generate the maps. But, we know from simple on-the-ground knowledge that the 2010 drought was extreme, leading to record lows on some major rivers in the Amazon region and an upsurge in the number of forest fires. Preliminary analyses suggest that the 2010 drought was more widespread and severe than the 2005 event. The 2005 drought was identified as a 1-in-100 year type event, was anomalous as did not occur in a El Nino year, hit South-Western Amazonia hardest (a different pattern to El Nino related droughts), and was associated with high Atlantic sea surface temperatures (not Pacific sea surface temperatures as in El Nino years). Now in 2010, we again have a severe drought, again hitting South-Western Amazonia hard. Atlantic sea-surface temperatures and the north-west movement of the inter-tropical convergence zone seem ripe for careful study to improve our understanding of the 2010 drought.

The good news for the Amazon is that deforestation rates have been radically reduced since 2005, so in that sense the Amazon is doing well. The bad news is these droughts kill trees and promote fires, which are very damaging to forests and leaves them more vulnerable to fire in the future, potentially leading to a drought-fire-carbon emissions feedback and widespread forest collapse.  Most concerning of all is that while two unusual droughts clearly don’t make a trend, they are consistent with some model projections made well before 2005: that higher sea surface temperatures increase drought frequency and intensity, leading later this century to substantial Amazon forest die-back.

We ought to remember that every ecosystem has it limits, a point of where they radically change. The open question is whether such a point is being reached in some parts of the Amazon. While little is expected of the climate change talks in Cancun next week, the stakes, in terms of the fate of the Amazon are much higher than they were a year ago in Copenhagen.

And here is an excerpt from a World Wildlife Foundation post by Nick Sundt.

The Amazon region is experiencing the third extreme drought in a dozen years — and it may turn out to be the worst on record. The droughts coupled with recent research findings, suggest that rising atmospheric concentrations of greenhouse gases will rapidly increase the frequency and severity of droughts in the region. The implications for people, biodiversity and climate are ominous.

As the map below shows, most of the Amazon region was afflicted by drought in mid-October 2010, with large areas in the north and west experiencing exceptional drought — beyond extreme.  Drought conditions, which now are improving, have been concentrated in Brazil, but extend into parts of neighboring countries including large areas of Bolivia, Peru, Colombia.

According to the classification system used by the University College London (UCL) Global Drought Monitor, exceptional droughts normally should not occur more than a couple of times  in a century. Typical impacts include “exceptional and widespread crop and pasture losses; exceptional fire risk; shortages of water in reservoirs, streams and wells, creating water emergencies.” According to UCL,  nearly 8.7 million people live in the locations shown above (which include smaller areas outside the Amazon) that are experiencing exceptional drought conditions.

The drought results from a combination of above normal temperatures over much of the region combined with low precipitation.  As the figure below illustrates, most of the Amazon region received less than 75% of normal rainfall between 1 July and 30 September.  Large areas have received far less precipitation, in many cases less than 25% of normal.

Brazil, Percent of Normal Precipitation, 1 July - 30 September  2010.  Source: NOAA.

In a press release on 22 Oct (Seca pode bater recorde na Amaz´nia / Drought may hit record in the Amazon), Brazil’s Amazon Environmental Research Institute (Instituto de Pesquisa Ambiental da Amaz´nia or IPAM) said:

“The drought of 2010 still hasn’t ended in the Amazon and could surpass that of 2005 as the region’s worst during the past four decades. In the Western Amazon, the Solimµes River reached its lowest level in recorded history. In Manaus, the level of the Rio Negro (Black River) is approaching that of 1963 – the lowest in a century. Even if this doesn’t occur, the forest will have already experienced three extreme dry spells in just 12 years, two of which occurred during the past five years: 1998, 2005 and 2010. And this is not including the drought of 2007, which affected only the Southeastern Amazon and left 10 thousand sq. km. of forest scorched in the region…`The Amazon that had wet seasons so well-defined that you could set your calendar to them – that Amazon is gone,‘ says ecologist Daniel Nepstad of IPAM…”

Among the consequences of the drought are extremely low flows on many of the region’s rivers.  On 24 October 2010, the Rio Negro, a major tributary of the Amazon, reached an all time low of 13.63 m at Manaus, edging out 1963 when water levels reached 13.64 m (Monitoramento Hidrologico: 2010, Boletim no 33 – 29/10/2010, by the Companhia de Pesquisa de Recursos Minerais or CPRM).  In contrast, just last year, the river saw an all time record high of 29.77 m as the region experienced devastating floods. (Relatorio da Cheia 2009 [PDF] [2010], by CPRM).  See photos of the flood [PDF]. Records for the Rio Negro extend back 107 years.  See also Flooding Near Manaus, Brazil, NASA Earth Observatory, 19 August 2010.

Writing for the New York Times upon his return from Iquitos, Peru, Nigel Pitman reports that “people were deeply upset by the lack of rain.”  He explains: “Long dry spells like these in Amazonia wither crops and worsen air pollution and cut off whole towns from the rest of the world, when the arm of the river they’re on turns to mud. They also destroy forests” (Drought in the Amazon, Up Close and Personal, 12 November 2010).  Satellite imagery on 19 August showed a pall of smoke concentrated over Bolivia  (see Fires in South America, NASA Earth Observatory, 8 September 2010), where drought conditions allowed fires to burn out of control, prompting the Bolivian government in mid-August to declare a state of emergency.

Dr Richard Bodmer of the Durrell Institute of Conservation and Ecology (University of Kent) and the Wildlife Conservation Society recently reported on the impacts the drought is having on the Pacaya Samiria National Reserve in the Peruvian Amazon.  Among the species affected:  the pink river dolphin (see photo below).  “The conditions have resulted in fewer dolphins observed throughout the Samiria River,” says Dr.  Bodmer.  “Overall, pink river dolphin numbers have decreased by 47 per cent and the grey river dolphin by 49 per cent compared with previous years’ population estimates. The dolphins have been forced to leave their habitats in the Samiria River and find refuge in the larger channels of the Amazon.” See Amazon drought results in dramatic fall in pink river dolphin populations (press release from Earthwatch).

Pink river dolphin (Inia geoffrensis)  in the Rio Negro, Brazil.  © naturepl.com/Luiz Claudio Marigo / WWF.

For an outstanding series of photographs documenting the impacts of the drought, see Estiagem na Amaz´nia posted by šltimo Segundo (22 November 2010).  See also the Reuters video (6 Nov 2010) below for discussion of some of the major consequences of the drought.

Above: Brazil Looks to Ease Amazon Drought, Reuters Video, 6 November 2010.

The 2005 Drought

Just 5 years ago — in 2005 — the Amazon experienced an extreme drought that prompted the government of Brazil to declare a state of emergency in most of the region. In The Drought of Amazonia in 2005 (by Jos© A. Marengo, Carlos A. Nobre, Javier Tomasella in the Journal of Climate, February 2008), researchers said:

“In 2005, large sections of southwestern Amazonia experienced one of the most intense droughts of the last hundred years. The drought severely affected human population along the main channel of the Amazon River and its western and southwestern tributaries, the Solimµes (also known as the Amazon River in the other Amazon countries) and the Madeira Rivers, respectively. The river levels fell to historic low levels and navigation along these rivers had to be suspended. The drought did not affect central or eastern Amazonia, a pattern different from the El Ni±o-related droughts in 1926, 1983, and 1998.”

The 2005 drought in the Amazon also was notable for its impacts on the global carbon cycle.  Though the exact magnitude of the impacts are a matter of debate within the science community (see Amazon drought raises research doubtsNature News, 20 July 2010), there is evidence that the drought along with elevated air temperatures sharply reduced net primary production (NPP) in the Amazon. NPP is a measure of the amount of atmospheric carbon plants pull from the atmosphere and incorporate into biomass.  Where NPP is reduced, less carbon is fixed by plants and more is left in the atmosphere to disrupt climate.

In Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009 (Science, 20 August 2010) researchers using satellite data found that global NPP dropped precipitously in 2005 to its lowest level of the decade.  The largest contributor to the drop was a decline of NPP in the Amazon rainforest that they attributed largely to elevated temperatures and the severe drought.

Similarly, scientists using records from long-term monitoring plots in the Amazon reported in Science a year earlier (6 March 2009) in Drought Sensitivity of the Amazon Rainforest that the drought had a large impact on carbon flows. They note that the Amazon’s old growth forests process 18 Petagrams (or Gigatons) of carbon each year — more than twice the amount emitted annually by burning fossil fuels (1 Petagram = 1015 grams = 1 billion metric tonnes = 1 Gigaton). “Relatively small changes in Amazon forest dynamics therefore have the potential to substantially affect the concentration of atmospheric CO2 and thus the rate of climate change itself,” they said.

They estimated that the drought reduced the biomass carbon balance by 1.2 to 1.6 Gigatons of carbon.  “The exceptional growth in atmospheric CO2 concentrations in 2005, the third greatest in the global record, may have been partially caused by the Amazon drought effects documented here,” they add. “Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.”

The scale of such drought-induced changes in the Amazon’s carbon budget can be contrasted with the magnitude of Brazil’s carbon emissions from other sources, and with global carbon emissions from fossil fuels.   The Brazilian government estimates that in 2005, carbon emissions from land-use and landcover changes (including deforestation) were 1.3 gigatons of carbon and accounted for 77% of Brazil’s carbon emissions from all sources in 2005  (Segunda Comunica§£o Nacional do Brasil   Conven§£o-Quadro das Na§µes Unidas sobre Mudan§a do Clima [PDF], Coordena§£o-Geral de Mudan§as Globais do Clima, Minist©rio da Ciªncia e Tecnologia, Bras­lia, 2010).

That is at the low-end of the range of 1.2-1.6 gigatons of carbon that may have shifted to the atmosphere in 2005 as a result of the Amazon drought.  In other words, 2005 carbon emissions associated with the drought may have equaled or  exceeded those from deforestation in Brazil that year. Furthermore, at the global level, the range of emissions that may have resulted from the 2005 drought is equivalent to roughly 16-22% of annual global carbon emissions from fossil fuel use in 2005 (about 7.4 gigatons of carbon).

The 2010 Drought

Just as the 2005 drought was preceded by an El Ni±o (from Apr-May-June 2002 through Feb-Mar-Apr 2003), the 2010 drought was preceded by an El Ni±o (May-June-July 2009 through March-April-May 2010).  Consequently, the Amazon experienced well below normal precipitation during the rainy season that normally stretches roughly from September-November through March-May.  The National Oceanic and Atmospheric Administration reported in The South American Monsoon System Summary, July 2009-June 2010 [Powerpoint] that precipitation from July 2009 through June 2010 was well below normal over the Amazon basin, consistent with the expected impacts of an El Ni±o.  Furthermore, precipitation was much lower than during the 2002-2003 rainy season associated with the 2002-2003 El Ni±o that set the stage for the 2005 drought.

Similarly, as in 2005, sea surface temperatures (SSTs) in the tropical North Atlantic ocean in 2010 were elevated during the dry season (normally April-September). The maps below show the global temperature anomalies for September 2005 and September 2010 (around the usual end of the dry season) and show that SSTs in the north tropical Atlantic and the Caribbean in both years show a similar pattern.  Likewise, the surface temperatures over the Amazon during both years were elevated — though were substantially higher in 2010.

September 2005 surface temperature anomalies.  Source: NASA

Global Surface Temperature Anomalies, September 2010. Source:  NASA.

The Monthly Tropical North Atlantic Index (TNA) (a measure of the average monthly SST anomaly in the region) has been at record high levels (and above the values for 2005) for every month of 2010 through September. The TNA for October was second only to that of 2003. The separate Caribbean SST Index (CAR) has not been at record levels for most months, but has been anomalously high and for most months has been above 2005 levels.

For both the TNA and the CAR indices, the long term trend is upward.  See for example the long-term trend for the Tropical North Atlantic Index for the month of September below.

Above: The North Tropical Atlantic SST Index for the Month of September, 1951-2010. SST anomalies (relative to 1951-2000) averaged over the region of the tropical Atlantic between Africa and the Caribbean (the region is indicated by NTA on this map) for the month of September from 1951 through 2010.

As in 2005, these high SSTs in the Tropical North Atlantic are resulting in one of the worst coral bleaching episodes on record in the Caribbean, as well as energizing one of the most active Atlantic hurricane seasons on record.  See our recent posting, Sea Surface Temperatures in Tropical North Atlantic Rise to Record Levels in 2010, With Impacts from the Amazon to Canada (16 November 2010).

Are the high SSTs — as in 2005 — also associated with the Amazon drought conditions during the 2010 dry season?  The answer is most likely “yes,” but the nature of the connection and the role of other factors (such as the 2009-2010 El Ni±o in the tropical Pacific) will have to await the published research results of scientists.  Similarly, we will not know the impacts of the 2010 drought on the cycling of carbon to and from the Amazon until scientific assessments are conducted and research results are published.

The Climate Change Connection

What connection might these droughts have to rising concentrations of GHGs in the atmosphere and what might we expect during the course of this century as GHG  concentrations continue to rise?

The connections between rising GHG concentrations on the  El Ni±os is a matter of scientific interest and debate.  El Ni±o-Southern Oscillation patterns in the tropical Pacific appear to be changing and some research suggests the changes may be related to climate change (see El Ni±o in a changing climate, Nature, 24 September 2010).  However, the science is very much unsettled, so we cannot say anything definitive about the relationship between rising GHGs and the El Ni±os that preceeded the 2005 and 2010 droughts.

In the case of rising SSTs in the tropical Atlantic — another major contributor to the 2005 drought and likely to the 2010 drought  —  the connection to rising GHG concentrations is better understood, though there is uncertainty regarding the magnitude of the impact relative to other variables.

When asked about the degree to which rising GHG concentrations in the atmosphere were contributing to the trend of rising  sea surface temperatures in the tropical North Atlantic Ocean, Greg Holland of the National Center for Atmospheric Research (NCAR) said at a Congressional briefing on 30 June 2010 that the temperatures could not be explained without accounting for rising GHG concentrations.  He said that while some researchers thought the rising GHG levels might account for 60-80% of the temperature anomaly, he estimated that about half was due to rising GHGs.

This is consistent with research results published in Geophysical Research Letters on 29 April 2010.  In Is the basin-wide warming in the North Atlantic Ocean related to atmospheric carbon dioxide and global warming?, Chunzai Wang and Shenfu Dong of NOAA’s Atlantic Oceanographic and Meteorological Laboratory, conclude that “both global warming and AMO [Atlantic multidecadal oscillation] variability make a contribution to the recent basin-wide warming in the North Atlantic and their relative contribution is approximately equal.”

If the rise in SSTs in the tropical north Atlantic are being driven in part by rising GHG concentrations in the atmosphere, and if those SSTs are implicated in the Amazon drought of 2005 and potentially in the drought of 2010, then rising GHG concentrations are among the factors likely contributing to those droughts. However, researchers have not at this point definitively attributed either drought to rising atmospheric GHG concentrations.

More importantly rising atmospheric concentrations of GHGs in the future will continue to affect tropical sea surface temperatures in both the Pacific and the Atlantic,  and research indicates that this — in combination with rising air temperatures over the Amazon — will increasingly dry out the Amazon. In Amazon Basin climate under global warming: the role of the sea surface temperature (Philosophical Transactions of The Royal Society B, Biological Sciences, 27 May 2008), researchers analyze these connections.

Using a model from the UK’s Hadley Centre, they focused on a period centered around the year 2050.  The analysis suggests that SST anomalies in both the tropical Atlantic and Pacific would combine to reduce Amazon Basin rainfall, “leading to a perennial soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary productivity (NPP). A further 23% NPP reduction occurs in response to a 3.5°C warmer air temperature associated with a global mean SST warming.”

In Drought under global warming: a review (Wiley Interdisciplinary Reviews: Climate Change, 19 Oct 2010) Dr Aiguo Dai of the National Center for Atmospheric Research says that models used by the Intergovernmental Panel on Climate Change in its 2007 assessment “project increased aridity in the 21st century, with a striking pattern that suggests continued drying” over many land areas including “most of Americas.”  While acknowledging the uncertainties, he says that the model results appear “to be a robust response to increased GHGs.”  He adds: “This is very alarming because if the drying is anything resembling [the model results]…a very large population will be severely affected in the coming decades” in Brazil and many other land areas.

Approaching — or passing — a Tipping Point

The possibility of increasingly arid conditions along with more frequent extreme droughts in the Amazon — and the regional and global implications — is a matter of growing and grave concern.  In a report to WWF, The Amazon’s Vicious Cycles: Drought and Fire in the Greenhouse [2.49 MB pdf] (Dec 2007, WWF), IPAM’s Daniel Nepstad concludes:

Synergistic trends in Amazon economies, vegetation, and climate could lead to the replacement or damaging of more than half of the closed-canopy forests of the Amazon Basin over the next 15 to 25 years, undoing many of the successes currently in progress to reduce global emissions of greenhouse gases to the atmosphere. Counteracting these trends are emerging changes in landholder behaviour, recent successes in establishing large blocks of protected areas in active agricultural frontiers, important market trends favouring forest stewardship, and a possible new international mechanism for compensating tropical nations for their progress in forest conservation, that could reduce the likelihood of a large-scale dieback of the Amazon forest complex. In the long term, however, the avoidance of this scenario may depend upon worldwide reductions of greenhouse gas emissions that are large enough to prevent global temperatures from rising more than a degree or two.”

More recently (in late 2009 and before the 2010 drought), in Major Tipping Points in the Earth’s Climate System and Consequences for the Insurance Sector [PDF], WWF identified the prospect of more frequent extreme droughts in the Amazon and the related rainforest dieback as being among the “tipping points” that could be passed in coming decades, with “significant impacts within the first half of this century.”

Given the current drought in the Amazon, the report’s discussion of the 2005 Amazon drought should raise some eyebrows:

“…until more recently, 2005-like droughts may have had a frequency of between 1-in-40 and 1-in-100-years. Recent work, however, suggests that, with the now elevated concentration of GHGs  [greenhouse gases] (currently ~430 ppmv CO2e [parts per million, volume, of carbon dioxide equivalent],compared with 280 ppmv CO2e pre-industrial), the return period is of the order of 1-in-20-years and this is likely to increase to 1-in-2 and above by between 2025 and 2050 if stabilization at 450 to 550 ppmv CO2e is achieved (with a higher probability if it is not).”

Given that the 2010 drought is comparable to the 2005 drought — and that they are only five years apart, we already may be closer to a return period of 1-in-2 years than the research suggested.

About the implications of an increase in the frequency of 2005-like droughts, the report says:

“The 2005 drought impacts were relatively severe. However, the social, environmental and economic consequences of such a significant increase in the frequency of 2005-like events are far more than the sum of 2005 impacts x drought frequency. What is currently termed ‘drought’, with such a significant increase in frequency, becomes the norm implying a potentially radical change in hydrological systems in affected regions, with knock-on effects for people, environment, and economy.”


For an excellent discussion of the 2005 and 2010 droughts, climate change and the implications for the Amazon, see the video below from GlobalPost, Rumble in the Jungle: Is the Amazon Losing the Fight Against Climate Change? by Erik German and Solana Pyne.  See also their online article, Rivers run dry as drought hits Amazon (GlobalPost, 3 November 2010).

– Nick Sundt

16 Responses to Another extreme drought hits the Amazon, raising climate change concerns

  1. Mike Roddy says:

    Climate Progress has become an excellent reference library, and thanks for today’s post.

    Global warming and logging effects become inseparable after a while. In both the Amazon and the northern temperate forests of North America, clearcutting reduces the forests’ resilience in surviving drought. There are many reasons for this: Large cleared areas mean hotter microclimates and reduced transpiration. Baked soil means reduced seed survival. Diverse, connected forest ecosystems contain drought resistant species that maintain cover and soil integrity. We need to stop consuming vast amounts of wood products, too- the US uses 25% of the global total, mostly for profligate and easily substituted products.

    IPCC IV predicted major forest dieoffs in mid century, when temperatures were expected to have risen by 2C. As with Arctic ice and extreme weather, the last four years have shown IPCC and scientists in general to have been quite optimistic. Meanwhile, international cooperation is moribund, and fossil fuel company corruption- and not just in the United States- has grown.

    McKibben is right in that ground up action is required. It will have to take the form of aggressive boycotts, public education, and humiliation of the dark forces that have been in control of the American government.
    The time to move this to the next level is now.

  2. Paulm says:

    Great post. Dire situation:(

  3. MapleLeaf says:

    Here is a neat site that you can use to track drought as well.

    http://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_browse.php

    There are some caveats, satellite-based products should not be used as a stand-alone product, especially in the tropics. But, satellite data does have the advantage of being real-time and high spatial and temporal resolution.

    Select “Drought” under “data Type” and then navigate to week “40” (when the Amazon drought seems to have been at its worst).

    The drought over the Amazon seems to be easing, but turn your attention to Argentina. Or worse, to the eastern third of Africa, and Madagascar.

  4. Prokaryotes says:

    Video: Amazon Rainforest Drought Worst in 100 Years

    Below is a video from ITN about the current drought in the Amazon rainforest which has left some rivers at their lowest level in over 100 years. http://desertification.wordpress.com/2010/10/29/amazon-rainforest-drought-google-newspublic/

  5. Prokaryotes says:

    http://www.naturalnews.com/Amazon_rainforest.html

    In collaboration with the Danish government and others, Google is launching a series of Google Earth layers and tours to allow you to explore the potential impacts of climate change on our planet and possible solutions. http://www.greenpeace.org/international/en/news/features/google-earth-soy-300909/

    Ecuador pledges no oil drilling in Amazon reserve
    Ecuador has agreed to refrain from drilling for oil in a pristine Amazon rainforest reserve in return for up to $3.6bn (£2.26bn) in payments from rich countries. http://www.bbc.co.uk/news/world-latin-america-10861415

    Eni Signs New Contract in Ecuador http://www.zacks.com/stock/news/43830/Eni+Signs+New+Contract+in+Ecuador+

  6. Sasparilla says:

    Excellent article, extremely sad to see this occurring again (I remember the 2005 episode) especially because of what this means in the big picture.

    It should be noted that large portions of the Amazon drying out (permanently) and burning is considered to be one of those climate change feedback items that could help push the control of this CO2 geo-engineering experiment we’re running out of our hands and have nature take over and finish the job (regardless of what we do). The amount of CO2 that is held within the Amazon is staggering. These feedback items are just sitting out there and nobody knows for sure when the point of no return would be reached.

    The other big feedback items include methane emissions (and to a lesser extent CO2 emissions) from the warming permafrost (with the Arctic on track to ice free summers we’ll get to watch this happen is looks like) as well as methane emissions from the warming of the deep ocean where it would melt large amounts of Clathrates. There may be others as well, but off the top of my head I can’t remember them.

    While our political processes seem to be demanding ever more time to do anything (or even stay in place in the case of the US), nature isn’t going to wait – she’s moving forward as a result of what we’ve done and continue to do and this is another warning for those that don’t have their heads in the sand.

    The fact that even if we ceased all CO2 emissions today, the atmosphere would continue to warm for 30 – 40 more years (thinking of the melting permafrost that is already occurring) makes me wonder if its already too late to avoid the big feedbacks (which basically means too late to avoid 1000+ppm effects). I’m not going to dwell on it, but it makes me wonder.

  7. clearscience says:

    I think that drought is certainly one of the most devastating impacts of AGW that people often neglect from time to time…

  8. fj3 says:

    This should be front-page news on main stream media.

  9. john atcheson says:

    Geez. the news is relentlessly grim, and the world’s leader’s will fiddle in Cancun.

    Sad — Elizabeth Kolbert was right. We will, in fact, self-destruct.

  10. Wonhyo says:

    If you consider things from a risk management perspective, concern for increasing drought in the Amazon should eclipse all other concerns combined. The “crises” in Afghanistan, Iraq, Iran, North Korea, budget deficits, joblessness, rising energy prices, etc., can all be solved at any time by changes in human behavior. The rising ocean heat and drought in the Amazon will result in global life-threatening increases in CO2 and decreases in O2. There’s a point beyond which no change in human behavior will stop the progression of climate change. Given the lag times of GHG effects, one should wonder whether we are already past the ultimate tipping point. With this in mind, we should be prepared to justify continuing the campaign for clean/renewable energy, even if it will not ultimately save the moderate livable climate.

  11. Edward says:

    Thanks for posting this highly depressing article. Lots of native people should die without being noticed because the lack of water has stopped communication. The big message is that your headline is NOT on the front page of the New York Times. Lack of communication is intentional. They are telling us that they don’t want most people to know. That makes CP one of the most important publications in the US, equal to the Voice of America.
    Action: Spread the word as far as you can.

  12. Prokaryotes says:

    Wonhyo says “The “crises” in Afghanistan, Iraq, Iran, North Korea, budget deficits, joblessness, rising energy prices, etc., can all be solved at any time by changes in human behavior.”

    Don’t forget heavy usage of lead fuel additives and long term impacts on health, IQ and population behavior. Then you have contamination from depleted uranium ammunition, which will kill people in a far future. In fact these are reason enough to fear retaliation. And children suffer genetically from abuse, violence poor food/water etc.

    Humans are master of destruction. All this war aside, the race is destroying itself with their life style and careless introduction of unknown substance impacts – keywords: GMO, untested chemicals, nanoscale particles, bio weapons, let alone all the uncontrolled impacts on the environment, which we feed upon.

    Might be very well already impossible to save the humans. Not even the related warnings of the brightest minds of our species are get the attention they need.

    How can the human race survive the next hundred years? http://www.youtube.com/watch?v=2TJlfhZwCMw

    Remember scientist warn us about the potential threats originating from climate change we do not identified yet or not studied well enough.

    On the bottom line all these wars shrink irrelevant when it comes to climate change, even with nuclear intervention. As lovelock pointed out. Ofc large scale nuclear detonation – on a planetary scale have the chance to render any human affords to get rid of greenhouse gases impossible.

    The only hope we have left is space colonization, leaving the home planet to solve the population riddle and to spread out into the solar system and beyond to prepare for extinction events of all kinds.

  13. dbmetzger says:

    Dry Spell Casts Pall over Fate of Brazil’s Amazon Jungle
    Months of drought in Brazil’s Amazon region is raising serious concerns about the future of the world’s biggest rainforest. The prolonged dry spell has left the Rio Negro at its lowest level in more than a century. http://www.newslook.com/videos/269508-dry-spell-casts-pall-over-fate-of-brazil-s-amazon-jungle?autoplay=true

  14. John McCormick says:

    Expanding and repeated drought in the Amazon Basin. Arctic ice melt back beyond the tipping point.

    What is in between them? The world’s grain basket in the North American Midwest.

    Is civilization hanging by a thread? We have no idea.

    John McCormick

  15. Wonhyo says:

    John McCormick #14 says: “Is civilization hanging by a thread? We have no idea.”

    Present day civilization is obviously not hanging by a thread (at least in most parts of the world). However, I think climate science gives us a pretty clear idea that the future of civilization is hanging by a thread. Even that may be optimistic. It might be more like the future of civilization is in freefall, the main chute has failed, and instead of pulling the ripcord on the reserve chute, we are accelerating into a headfirst freefall.

  16. RayFrack says:

    Models seem to predict severe stress for tropical rain forests as CO2 rises and the climate continues to warm. It is further suggested that the current drought in the Amazon may be an early manifestation of this climate change. Could someone comment on or attempt to reconcile these projections and interpretations with the findings presented by Jaramillo et al. (Science 330:957-961, 2010 Nov 12) in which they report that tropical rain forests in Columbia and Venezuela, slightly more Northern than the Amazonian rain forest, flourished during the PETM (when temperatures and CO2 were both much higher than today). Their data suggest that average rainfall amounts/moisture were as high or higher than prior to the PETM (and along with high CO2, may have been responsible for avoidance of heat stress).