Tumblr Icon RSS Icon

Meteorological Society: Warming Is ‘Unequivocal’, We’re The ‘Dominant Cause’, We Need ‘Rapid Reduction’ Of CO2

Posted on

"Meteorological Society: Warming Is ‘Unequivocal’, We’re The ‘Dominant Cause’, We Need ‘Rapid Reduction’ Of CO2"

Share:

google plus icon

The American Meteorological Society has updated and strengthened its statement on global warming.

Here are its summary conclusions, “based on the peer-reviewed scientific literature and … consistent with the vast weight of current scientific understanding”:

There is unequivocal evidence that Earth’s lower atmosphere, ocean, and land surface are warming; sea level is rising; and snow cover, mountain glaciers, and Arctic sea ice are shrinking. The dominant cause of the warming since the 1950s is human activities. This scientific finding is based on a large and persuasive body of research. The observed warming will be irreversible for many years into the future, and even larger temperature increases will occur as greenhouse gases continue to accumulate in the atmosphere. Avoiding this future warming will require a large and rapid reduction in global greenhouse gas emissions. The ongoing warming will increase risks and stresses to human societies, economies, ecosystems, and wildlife through the 21st century and beyond, making it imperative that society respond to a changing climate. To inform decisions on adaptation and mitigation, it is critical that we improve our understanding of the global climate system and our ability to project future climate through continued and improved monitoring and research. This is especially true for smaller (seasonal and regional) scales and weather and climate extremes, and for important hydroclimatic variables such as precipitation and water availability.

Technological, economic, and policy choices in the near future will determine the extent of future impacts of climate change. Science-based decisions are seldom made in a context of absolute certainty. National and international policy discussions should include consideration of the best ways to both adapt to and mitigate climate change. Mitigation will reduce the amount of future climate change and the risk of impacts that are potentially large and dangerous. At the same time, some continued climate change is inevitable, and policy responses should include adaptation to climate change. Prudence dictates extreme care in accounting for our relationship with the only planet known to be capable of sustaining human life.

This new statement is considerably stronger than the 2007 one. That shouldn’t be a surprise to anyone, given that it is based on scientific observation and analysis:

  1. The scientific evidence for manmade global warming has gotten considerably stronger — see It’s “Extremely Likely That at Least 74% of Observed Warming Since 1950″ Was Manmade; It’s Highly Likely All of It Was (and links therein);
  2. Many observed changes have occurred faster than the models — see the 2010 AAAS presentation that concluded: New scientific findings since the 2007 IPCC report are found to be more than twenty times as likely to indicate that global climate disruption is “worse than previously expected,” rather than “not as bad as previously expected”;
  3. Projections of future changes have likewise become much more dire — see “An Illustrated Guide to the Science of Global Warming Impacts: How We Know Inaction Is the Gravest Threat Humanity Faces.”

Only anti-science deniers — pure rejectionists of rational thinking — can continue to encourage inaction in the face of this overwhelming body of evidence.

Here are some extended excerpts from the full statement:

How is climate changing?

Warming of the climate system now is unequivocal, according to many different kinds of evidence.  Observations show increases in globally averaged air and ocean temperatures, as well as widespread melting of snow and ice and rising globally averaged sea level. Surface temperature data for Earth as a whole, including readings over both land and ocean, show an increase of about 0.8°C (1.4°F) over the period 1901─2010 and about 0.5°C (0.9°F) over the period 1979–2010 (the era for which satellite-based temperature data are routinely available). Due to natural variability, not every year is warmer than the preceding year globally. Nevertheless, all of the 10 warmest years in the global temperature records up to 2011 have occurred since 1997, with 2005 and 2010 being the warmest two years in more than a century of global records. The warming trend is greatest in northern high latitudes and over land. In the U.S., most of the observed warming has occurred in the West and in Alaska; for the nation as a whole, there have been twice as many record daily high temperatures as record daily low temperatures in the first decade of the 21st century.

The effects of this warming are especially evident in the planet’s polar regions. Arctic sea ice extent and volume have been decreasing for the past several decades. Both the Greenland and Antarctic ice sheets have lost significant amounts of ice. Most of the world’s glaciers are in retreat.

Other changes, globally and in the U.S., are also occurring at the same time. The amount of rain falling in very heavy precipitation events (the heaviest 1% of all precipitation events) has increased over the last 50 years throughout the U.S. Freezing levels are rising in elevation, with rain occurring more frequently instead of snow at mid-elevations of western mountains. Spring maximum snowpack is decreasing, snowmelt occurs earlier, and the spring runoff that supplies over two-thirds of western U.S. streamflow is reduced. Evidence for warming is also observed in seasonal changes across many areas, including earlier springs, longer frost-free periods, longer growing seasons, and shifts in natural habitats and in migratory patterns of birds and insects.

Globally averaged sea level has risen by about 17 cm (7 inches) in the 20th century, with the rise accelerating since the early 1990s. Close to half of the sea level rise observed since the 1970s has been caused by water expansion due to increases in ocean temperatures. Sea level is also rising due to melting from continental glaciers and from ice sheets on both Greenland and Antarctica. Locally, sea level changes can depend also on other factors such as slowly rising or falling land, which results in some local sea level changes much larger or smaller than the global average. Even small rises in sea level in coastal zones are expected to lead to potentially severe impacts, especially in small island nations and in other regions that experience storm surges associated with vigorous weather systems.
Why is climate changing?

Climate is always changing. However, many of the observed changes noted above are beyond what can be explained by the natural variability of the climate. It is clear from extensive scientific evidence that the dominant cause of the rapid change in climate of the past half century is human-induced increases in the amount of atmospheric greenhouse gases, including carbon dioxide (CO2), chlorofluorocarbons, methane, and nitrous oxide. The most important of these over the long term is CO2, whose concentration in the atmosphere is rising principally as a result of fossil-fuel combustion and deforestation. While large amounts of CO2 enter and leave the atmosphere through natural processes, these human activities are increasing the total amount in the air and the oceans. Approximately half of the CO2 put into the atmosphere through human activity in the past 250 years has been taken up by the ocean and terrestrial biosphere, with the other half remaining in the atmosphere. Since long-term measurements began in the 1950s, the atmospheric CO2 concentration has been increasing at a rate much faster than at any time in the last 800,000 years. Having been introduced into the atmosphere it will take a thousand years for the majority of the added atmospheric CO2 to be removed by natural processes, and some will remain for thousands of subsequent years.

Water vapor also is an important atmospheric greenhouse gas. Unlike other greenhouse gases, however, the concentration of water vapor depends on atmospheric temperature and is controlled by the global climate system through its hydrological cycle of evaporation-condensation-precipitation.  Water vapor is highly variable in space and time with a short lifetime, because of weather variability. Observations indicate an increase in globally averaged water vapor in the atmosphere in recent decades, at a rate consistent with the response produced by climate models that simulate human-induced increases in greenhouse gases.  This increase in water vapor also strengthens the greenhouse effect, amplifying the impact of human-induced increases in other greenhouse gases….

How can climate change be projected into the future?

Climate is potentially predictable for much longer time scales than weather for several reasons. One reason is that climate can be meaningfully characterized by seasonal-to-decadal averages and other statistical measures, and the averaged weather is more predictable than individual weather events. A helpful analogy in this regard is that population averages of human mortality are predictable while life spans of individuals are not. A second reason is that climate involves physical systems and processes with long time scales, including the oceans and snow and ice, while weather largely involves atmospheric phenomena (e.g., thunderstorms, intense snow storms) with short time scales. A third reason is that climate can be affected by slowly changing factors such as human-induced changes in the chemical composition of the atmosphere, which alter the natural greenhouse effect.

Climate models simulate the important aspects of climate and climate change based on fundamental physical laws of motion, thermodynamics, and radiative transfer. These models report on how climate would change in response to several specific “scenarios” for future greenhouse gas emission possibilities. Future climate change projections have uncertainties that occur for several reasons — because of differences among models, because long-term predictions of natural variations (e.g., volcanic eruptions and El Niño events) are not possible, and because it is not known exactly how greenhouse gas emissions will evolve in future decades. Future emissions will depend on global social and economic development, and on the extent and impact of activities designed to reduce greenhouse gas and black carbon emissions.

Changes in the means and extremes of temperature and precipitation in response to increasing greenhouse gases can be projected over decades to centuries into the future, even though the timing of individual weather events cannot be predicted on this time scale. Because it would take many years for observations to verify whether a future climate projection is correct, researchers establish confidence in these projections by using historical and paleoclimate evidence and through careful study of observations of the causal chain between energy flow changes and climate-pattern responses. A valuable demonstration of the validity of current climate models is that when they include all known natural and human-induced factors that influence the global atmosphere on a large scale, the models reproduce many important aspects of observed changes of the 20th-century climate, including (1) global, continental, and subcontinental mean and extreme temperatures, (2) Arctic sea ice extent, (3) the latitudinal distribution of precipitation, and (4) extreme precipitation frequency…..

How is the climate expected to change in the future?

… Atmospheric water content will increase globally, consistent with warmer temperatures, and consequently the global hydrological cycle will continue to accelerate. For many areas, model simulations suggest there will be a tendency towards more intense rain and snow events separated by longer periods without precipitation. However, changes in precipitation patterns are expected to differ considerably by region and by season. In some regions, the accelerated hydrological cycle will likely reinforce existing patterns of precipitation, leading to more severe droughts and floods…. For example, the model simulations suggest that precipitation will increase in the far northern parts of North America, and decrease in the southwest and south-central United States where more droughts will occur.

Climate-model simulations further project that heavy precipitation events will continue to become more intense and frequent, leading to increased precipitation totals from the strongest storms. This projection has important implications for water-resource management and flood control. The simulations also indicate the likelihood of longer dry spells between precipitation events in the subtropics and lower-middle latitudes, with shorter dry spells projected for higher latitudes where mean precipitation is expected to increase. Continued warming also implies a reduction of winter snow accumulations in favor of rain in many places, and thus a reduced spring snowpack. Rivers now fed by snowmelt will experience earlier spring peaks and reduced warm-season flows. Widespread retreat of mountain glaciers is expected to eventually lead to reduced dry season flows for glacier-fed rivers. Drought is projected to increase over Africa, Europe, and much of the North American continental interior, and particularly the southwest United States. However, natural variations in world ocean conditions at decadal scale, such as those in the North Pacific and North Atlantic basins, could offset or enhance such changes in the next few decades. For the longer term, paleoclimatic observations suggest that droughts lasting decades are possible and that these prolonged droughts could occur with little warning.

… Heat waves and cold snaps and their associated weather conditions will continue to occur, but proportionately more extreme warm periods and fewer cold periods are expected. Indeed, what many people traditionally consider a cold wave is already changing toward less severe conditions. Frost days (those with minimum temperature below freezing) will be fewer and growing seasons longer. Drier conditions in summer, such as those anticipated for the southern United States and southern Europe, are expected to contribute to more severe episodes of extreme heat. Critical thresholds of daily maximum temperature, above which ecosystems and crop systems (e.g., food crops such as rice, corn, and wheat) suffer increasingly severe damage, are likely to be exceeded more frequently.

The time to act was many years ago, but now is infinitely better than later.

Related Posts:

 

« »

8 Responses to Meteorological Society: Warming Is ‘Unequivocal’, We’re The ‘Dominant Cause’, We Need ‘Rapid Reduction’ Of CO2

  1. Mike Roddy says:

    Somebody needs to notify Anthony Watts and Joe Bastardi. Maybe they will issue press releases acknowledging that they were wrong, and reveal their secret funding sources.

    Hey, we can dream, right?

  2. Paul Klinkman says:

    Need, yes. Working to get it?

    How to know exactly what we’re doing, so the lazy deniers don’t push us out of the way so easily:

    1. What will the treaty look like – the worldwide CO2 and methane treaty, similar to the ozone protecting treaty, the treaty that works?

    2. Exactly how are we going to restore the Arctic Ocean’s ice pack, once we’ve signed that treaty?

    3. deployable sequestration ready to go, probably photosynthesize and bury.

    4. How are we going to store electricity for peak demand?

    5. Where is the integrated assembly line for new solar ideas? How exactly do they get into products? If you answered “just let them all rot on the vine like they do now”, you’re on the wrong side.

  3. Bill Walker says:

    Does this mean that many more TV weather forecasters will finally start connecting the dots?

  4. paul magnus says:

    Invoking FDR: Where Is the Leadership on Climate Change?
    http://www.huffingtonpost.com
    With the exception of nuclear war, I can’t think of any greater existential threat to human civilization than climate change and its related impacts. If ever we needed an “FDR moment,” now would be it.

    • Spike says:

      Indeed the parallel with nuclear war was alluded to in the Bulletin of the Atomic Scientists recently:

      “But when it comes to climate change, the logic of mutually assured destruction seems to have escaped the politicians in Washington and the diplomats in Copenhagen and Cancun and Durban and Bonn. They fail to recognize that MAD does not require the detonation of massively powerful nuclear bombs.”

      http://www.thebulletin.org/web-edition/columnists/dawn-stover/climate-madness

  5. paul magnus says:

    Forbes coming round…. we needed groups like the TV Meteorologists and the church etc… ones that interface to the public and ones that they trust… to have come onboard 10yrs ago.

    Climate Portals shared a link via Conservation Hawks.
    6 hours ago
    As Arctic Ice Reaches Record Low, Meteorologists Name Humans ‘Dominant’ Cause Of Climate Change – Fo
    http://www.forbes.com
    As Arctic sea ice reaches a new low, the American Meterological Society has named humans as the ‘dominant’ cause of the changing climate.

  6. Ronnie Wright says:

    It’s about time the weathermen stopped making themselves look so stupid with their climate denial. For an organization supposedly base on science they have sure been slow accepting the science around climate change.

  7. Lionel A says:

    The August 28, 2012 at 1:04 pm

    seems to be stuck.