Amplification of Cretaceous Warmth by Biological Cloud Feedbacks

That’s the title of an article in Science today (available here with subs.) I’m giving a talk this morning so don’t have a lot of time to comment on it, but here’s the abstract:

The extreme warmth of particular intervals of geologic history cannot be simulated with climate models, which are constrained by the geologic proxy record to relatively modest increases in atmospheric carbon dioxide levels. Recent recognition that biological productivity controls the abundance of cloud condensation nuclei (CCN) in the unpolluted atmosphere provides a solution to this problem. Our climate simulations show that reduced biological productivity (low CCN abundance) provides a substantial amplification of CO2-induced warming by reducing cloud lifetimes and reflectivity. If the stress of elevated temperatures did indeed suppress marine and terrestrial ecosystems during these times, this long-standing climate enigma may be solved.

Wow. If climate warming “did indeed suppress marine and terrestrial ecosystems,” which leads to “reduced biological productivity” then we get fewer clouds and more absorption of the sun’s heat. Ocean acidification and widespread drought, wildfires, and pests, anyone?

Oh, what the heck, here’s the rest of this very upbeat article — it’s short and worth a read:

During supergreenhouse intervals of the geologic past, both tropical and polar temperatures were considerably warmer than today, and the gradient between the two was reduced. To even approach these equable climate states with climate models, atmospheric CO2 levels must be specified that significantly exceed most proxy estimates for the Cretaceous and the Eocene (1). Thus, climate modelers have invoked viable but hard-to-evaluate hypotheses of elevated atmospheric methane levels, greater poleward oceanic heat transport, and enhanced polar stratospheric clouds (2).


An unexplored alternative involves planetary albedo, the fraction of the incoming solar radiation that is reflected to space, which is largely dependent on cloud cover and cloud albedo. A major determinant of cloud properties is the abundance of cloud condensation nuclei (CCN). When CCN are abundant, many small cloud droplets form, creating optically dense, high-albedo clouds; when abundance is low, fewer and larger droplets form, creating optically thinner, lower-albedo, and, importantly, shorter-lived clouds (3). Today, pollution dominates continental CCN, producing abundances of thousands per cm3. In remote oceanic regions, biological release of dimethylsulfide is the major pathway for CCN production. Andreae (4) concludes that biological productivity determined the CCN concentrations over prehuman unpolluted land and sea, ranging from a few tens per cm3 in low-productivity regions to a few hundred per cm3 in high-productivity regions, supporting the notion of a prominent role for the biota in climate regulation on the prehuman Earth (5). If CO2-induced warming during supergreenhouse intervals reduced global primary productivity by temperature stress and enhanced vertical stratification of the ocean, causing a reduction in CCN concentration, would lower cloud amounts and albedo have caused further warming?

To explore this hypothesis, we used a global climate model (GENESIS version 3.0) (GCM) to simulate middle Cretaceous [

100 million years ago (Ma)] climate with various atmospheric CO2 amounts. This GCM has a slab mixed-layer ocean and prognostic cloud water amounts, and version 3 uses the National Center for Atmospheric Research (NCAR) Community Climate Model 3 (CCM3) radiation code with prescribed cloud droplet radii re (3). Cloud droplet radii mainly affect cloud optical depth, infrared emissivity, and precipitation efficiency, Pe, the rate at which cloud water is converted to precipitation. Modern large-scale observations and theory suggest that for

10- to 100-fold global reductions in past aerosol and CCN amounts,

30% (over ocean) to

100% (over land) increases in liquid droplet radii are plausible (3). We simulate the Cretaceous climate with these increases in re and with Pe increased for liquid clouds by a factor of 2.2, reflecting the maximum likely effect of extreme global warmth on marine and terrestrial biological productivity and CCN production rate.


Our Cretaceous model results are shown in Fig. 1. [JR: Reprinted at bottom] In common with previous GCM studies, increasing CO2 from 1x to 4x preindustrial atmospheric level (PAL) (Fig. 1, A and B) fails to produce the extreme high-latitude warmth implied by temperature proxy data (Fig. 1D). We then performed another 4x PAL simulation with the increases in re and Pe described above (Fig. 1C). Global cloud cover is reduced from 64 to 55%, and the less extensive and optically thinner clouds reduce planetary albedo from 0.30 to 0.24. The ensuing warming is dramatic, both in the tropics and in high latitudes, where it is augmented by surface albedo feedback of almost vanishing snow and sea-ice cover. (Other feedbacks due to changes in cloud types and levels are minor.) High-latitude continental temperatures remain above or very close to freezing year round, in better accord with proxy evidence.


  • 1. K. L. Bice et al., Paleoceanography 21, PA2002 10.1029/2005PA001203 (2006). [CrossRef]
  • 2. L. C. Sloan, D. Pollard, Geophys. Res. Lett. 25, 3517 (1998). [CrossRef] [ISI]
  • 3. Materials and methods are available on Science Online.
  • 4. M. O. Andreae, Science 315, 50 (2007).[Abstract/Free Full Text]
  • 5. R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, Nature 326, 655 (1987). [CrossRef]
  • 6. J. E. Francis, I. Poole, Palaeogeogr. Palaeoclim. Palaeoecol. 182, 47 (2002). [CrossRef]
  • 7. R. A. Spicer, R. M. Corfield, Geol. Mag. 129, 169 (1992).[Abstract]
  • 8. This work was supported in part by grants from NSF’s Carbon and Water in the Earth System (to L.R.K.) and Paleoclimate History (to D.P.) programs.

Supporting Online

JR: I hope that’s all clear to you!